Project – 2

By: /
16 March, 2011
By: System Administrator

The primary element in both spectroscopes and spectrographs is a narrow slit oriented perpendicular to the direction in which the grating or prism spreads the light. As with a pinhole camera, the small aperture images the light source sharply along the spectrum’s axis, which keeps the spread of wavelengths distinct. Each image of the slit, in a slightly different color, is arrayed across the field of view in a wide spectrum image. If any wavelength is brighter or dimmer than the rest, it shows up, respectively, as a bright or dark line in the spectrum.

Although spectroscopes have always been easy to make, a homebrew recording spectrograph presented more of a challenge. Building your own spectrograph meant using microcontrollers and stepper motors to move diffraction gratings past a light sensor — many were planned, but few were actually built.

Today, digital cameras and online tools can turn a simple spectroscope into a laboratory-quality, high-resolution spectrograph. All it takes is a few plumbing parts and other inexpensive materials and less than an hour at your kitchen table.

Before you click away, we’d like to ask you for a favour … 

 

Open Canada is published by the Canadian International Council, but that’s only the beginning of what the CIC does. Through its research and live events hosted by its 18 branches across the country, the CIC is dedicated to engaging Canadians from all walks of life in an ongoing conversation about Canada’s place in the world.

By becoming a member, you’ll be joining a community of Canadians who seek to shape Canada’s role in the world, and you’ll help Open Canada continue to publish thoughtful and provocative reporting and analysis.

Join us